Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Adv Drug Deliv Rev ; 208: 115294, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527624

RESUMO

Genodermatoses represent a large group of inherited skin disorders encompassing clinically-heterogeneous conditions that manifest in the skin and other organs. Depending on disease variant, associated clinical manifestations and secondary complications can severely impact patients' quality of life and currently available treatments are transient and not curative. Multiple emerging approaches using CRISPR-based technologies offer promising prospects for therapy. Here, we explore current advances and challenges related to gene editing in rare skin diseases, including different strategies tailored to mutation type and structural organization of the affected gene, considerations for in vivo and ex vivo applications, the critical issue of delivery into the skin, and immune aspects of therapy. Against the backdrop of a landmark FDA approval for the first re-dosable gene replacement therapy for a rare genetic skin disorder, gene editing approaches are inching closer to the clinics and the possibility of a local permanent cure for patients affected by these disorders.


Assuntos
Edição de Genes , Dermatopatias , Humanos , Sistemas CRISPR-Cas/genética , Qualidade de Vida , Pele , Dermatopatias/genética , Dermatopatias/terapia
2.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255836

RESUMO

Antisense oligonucleotides (ASOs) represent an emerging therapeutic platform for targeting genetic diseases by influencing various aspects of (pre-)mRNA biology, such as splicing, stability, and translation. In this study, we investigated the potential of modulating the splicing pattern in recessive dystrophic epidermolysis bullosa (RDEB) patient cells carrying a frequent genomic variant (c.425A > G) that disrupts splicing in the COL7A1 gene by using short 2'-O-(2-Methoxyethyl) oligoribo-nucleotides (2'-MOE ASOs). COL7A1-encoded type VII collagen (C7) forms the anchoring fibrils within the skin that are essential for the attachment of the epidermis to the underlying dermis. As such, gene variants of COL7A1 leading to functionally impaired or absent C7 manifest in the form of extensive blistering and wounding. The severity of the disease pattern warrants the development of novel therapies for patients. The c.425A > G variant at the COL7A1 exon 3/intron 3 junction lowers the efficiency of splicing at this junction, resulting in non-functional C7 transcripts. However, we found that correct splicing still occurs, albeit at a very low level, highlighting an opportunity for intervention by modulating the splicing reaction. We therefore screened 2'-MOE ASOs that bind along the COL7A1 target region ranging from exon 3 to the intron 3/exon 4 junction for their ability to modulate splicing. We identified ASOs capable of increasing the relative levels of correctly spliced COL7A1 transcripts by RT-PCR, sqRT-PCR, and ddPCR. Furthermore, RDEB-derived skin equivalents treated with one of the most promising ASOs exhibited an increase in full-length C7 expression and its accurate deposition along the basement membrane zone (BMZ).


Assuntos
Epidermólise Bolhosa Distrófica , Humanos , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/terapia , Splicing de RNA , Pele , Íntrons , Precursores de RNA , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Colágeno Tipo VII/genética
4.
Orphanet J Rare Dis ; 18(1): 391, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115074

RESUMO

BACKGROUND: Recommendations for statistical methods in rare disease trials are scarce, especially for cross-over designs. As a result various state-of-the-art methodologies were compared as neutrally as possible using an illustrative data set from epidermolysis bullosa research to build recommendations for count, binary, and ordinal outcome variables. For this purpose, parametric (model averaging), semiparametric (generalized estimating equations type [GEE-like]) and nonparametric (generalized pairwise comparisons [GPC] and a marginal model implemented in the R package nparLD) methods were chosen by an international consortium of statisticians. RESULTS: It was found that there is no uniformly best method for the aforementioned types of outcome variables, but in particular situations, there are methods that perform better than others. Especially if maximizing power is the primary goal, the prioritized unmatched GPC method was able to achieve particularly good results, besides being appropriate for prioritizing clinically relevant time points. Model averaging led to favorable results in some scenarios especially within the binary outcome setting and, like the GEE-like semiparametric method, also allows for considering period and carry-over effects properly. Inference based on the nonparametric marginal model was able to achieve high power, especially in the ordinal outcome scenario, despite small sample sizes due to separate testing of treatment periods, and is suitable when longitudinal and interaction effects have to be considered. CONCLUSION: Overall, a balance has to be found between achieving high power, accounting for cross-over, period, or carry-over effects, and prioritizing clinically relevant time points.


Assuntos
Doenças Raras , Projetos de Pesquisa , Estatística como Assunto , Humanos , Estudos Cross-Over , Tamanho da Amostra
5.
Cells ; 12(19)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37830583

RESUMO

(1) Background and Objective: MicroRNAs (miRs) are biomarkers for assessing the extent of cardiac remodeling after myocardial infarction (MI) and important predictors of clinical outcome in heart failure. Overexpression of miR-30d-5p appears to have a cardioprotective effect. The aim of the present study was to demonstrate whether miR-30d-5p could be used as a potential therapeutic target to improve post-MI adverse remodeling. (2) Methods and Results: MiR profiling was performed by next-generation sequencing to assess different expression patterns in ischemic vs. healthy myocardium in a rat model of MI. MiR-30d-5p was significantly downregulated (p < 0.001) in ischemic myocardium and was selected as a promising target. A mimic of miR-30d-5p was administered in the treatment group, whereas the control group received non-functional, scrambled siRNA. To measure the effect of miR-30d-5p on infarct area size of the left ventricle, the rats were randomized and treated with miR-30d-5p or scrambled siRNA. Histological planimetry was performed 72 h and 6 weeks after induction of MI. Infarct area was significantly reduced at 72 h and at 6 weeks by using miR-30d-5p (72 h: 22.89 ± 7.66% vs. 35.96 ± 9.27%, p = 0.0136; 6 weeks: 6.93 ± 4.58% vs. 12.48 ± 7.09%, p = 0.0172). To gain insight into infarct healing, scratch assays were used to obtain information on cell migration in human umbilical vein endothelial cells (HUVECs). Gap closure was significantly faster in the mimic-treated cells 20 h post-scratching (12.4% more than the scrambled control after 20 h; p = 0.013). To analyze the anti-apoptotic quality of miR-30d-5p, the ratio between phosphorylated p53 and total p53 was evaluated in human cardiomyocytes using ELISA. Under the influence of the miR-30d-5p mimic, cardiomyocytes demonstrated a decreased pp53/total p53 ratio (0.66 ± 0.08 vs. 0.81 ± 0.17), showing a distinct tendency (p = 0.055) to decrease the apoptosis rate compared to the control group. (3) Conclusion: Using a mimic of miR-30d-5p underlines the cardioprotective effect of miR-30d-5p in MI and could reduce the risk for development of ischemic cardiomyopathy.


Assuntos
Cardiomiopatias , MicroRNAs , Infarto do Miocárdio , Isquemia Miocárdica , Ratos , Humanos , Animais , Células Endoteliais/metabolismo , Proteína Supressora de Tumor p53 , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/complicações , Isquemia Miocárdica/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno
6.
Br J Dermatol ; 190(1): 80-93, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37681509

RESUMO

BACKGROUND: Cutaneous squamous cell carcinoma (SCC) is the leading cause of death in patients with recessive dystrophic epidermolysis bullosa (RDEB). However, the survival time from first diagnosis differs between patients; some tumours spread particularly fast, while others may remain localized for years. As treatment options are limited, there is an urgent need for further insights into the pathomechanisms of RDEB tumours, to foster therapy development and support clinical decision-making. OBJECTIVES: To investigate differences in RDEB tumours of diverging aggressiveness at the molecular and phenotypic level, with a particular focus on epithelial-to-mesenchymal (EMT) transition states and thus microRNA-200b (miR-200b) as a regulator. METHODS: Primary RDEB-SCC keratinocyte lines were characterized with respect to their EMT state. For this purpose, cell morphology was classified and the expression of EMT markers analysed using immunofluorescence, flow cytometry, semi-quantitative reverse transcriptase polymerase chain reaction and Western blotting. The motility of RDEB-SCC cells was determined and conditioned medium of RDEB-SCC cells was used to treat endothelial cells in an angiogenesis assay. In addition, we mined previously generated microRNA (miRNA) profiling data to identify a candidate with potential therapeutic relevance and performed transient miRNA transfection studies to investigate the candidate's ability to reverse EMT characteristics. RESULTS: We observed high variability in EMT state in the RDEB-SCC cell lines, which correlated with in situ analysis of two available patient biopsies and respective clinical disease course. Furthermore, we identified miR-200b-3p to be downregulated in RDEB-SCCs, and the extent of deregulation significantly correlated with the EMT features of the various tumour lines. miR-200b-3p was reintroduced into RDEB-SCC cell lines with pronounced EMT features, which resulted in a significant increase in epithelial characteristics, including cell morphology, EMT marker expression, migration and angiogenic potential. CONCLUSIONS: RDEB-SCCs exist in different EMT states and the level of miR-200b is indicative of how far an RDEB-SCC has gone down the EMT path. Moreover, the reintroduction of miR-200b significantly reduced mesenchymal features.


Assuntos
Carcinoma de Células Escamosas , Epidermólise Bolhosa Distrófica , Transição Epitelial-Mesenquimal , MicroRNAs , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/etiologia , Células Endoteliais/patologia , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/complicações , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Neoplasias Cutâneas/patologia
7.
Cancers (Basel) ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37444397

RESUMO

Machine learning has been proven to be a powerful tool in the identification of diagnostic tumor biomarkers but is often impeded in rare cancers due to small patient numbers. In patients suffering from recessive dystrophic epidermolysis bullosa (RDEB), early-in-life development of particularly aggressive cutaneous squamous-cell carcinomas (cSCCs) represents a major threat and timely detection is crucial to facilitate prompt tumor excision. As miRNAs have been shown to hold great potential as liquid biopsy markers, we characterized miRNA signatures derived from cultured primary cells specific for the potential detection of tumors in RDEB patients. To address the limitation in RDEB-sample accessibility, we analyzed the similarity of RDEB miRNA profiles with other tumor entities derived from the Cancer Genome Atlas (TCGA) repository. Due to the similarity in miRNA expression with RDEB-SCC, we used HN-SCC data to train a tumor prediction model. Three models with varying complexity using 33, 10 and 3 miRNAs were derived from the elastic net logistic regression model. The predictive performance of all three models was determined on an independent HN-SCC test dataset (AUC-ROC: 100%, 83% and 96%), as well as on cell-based RDEB miRNA-Seq data (AUC-ROC: 100%, 100% and 91%). In addition, the ability of the models to predict tumor samples based on RDEB exosomes (AUC-ROC: 100%, 93% and 100%) demonstrated the potential feasibility in a clinical setting. Our results support the feasibility of this approach to identify a diagnostic miRNA signature, by exploiting publicly available data and will lay the base for an improvement of early RDEB-SCC detection.

8.
Br J Dermatol ; 189(1): 80-90, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37098154

RESUMO

BACKGROUND: Epidermolysis bullosa (EB) is a rare, genetically and clinically heterogeneous group of skin fragility disorders. No cure is currently available, but many novel and repurposed treatments are upcoming. For adequate evaluation and comparison of clinical studies in EB, well-defined and consistent consensus-endorsed outcomes and outcome measurement instruments are necessary. OBJECTIVES: To identify previously reported outcomes in EB clinical research, group these outcomes by outcome domains and areas and summarize respective outcome measurement instruments. METHODS: A systematic literature search was performed in the databases MEDLINE, Embase, Scopus, Cochrane CENTRAL, CINAHL, PsycINFO and trial registries covering the period between January 1991 and September 2021. Studies were included if they evaluated a treatment in a minimum of three patients with EB. Two reviewers independently performed the study selection and data extraction. All identified outcomes and their respective instruments were mapped onto overarching outcome domains. The outcome domains were stratified according to subgroups of EB type, age group, intervention, decade and phase of clinical trial. RESULTS: The included studies (n = 207) covered a range of study designs and geographical settings. A total of 1280 outcomes were extracted verbatim and inductively mapped onto 80 outcome domains and 14 outcome areas. We found a steady increase in the number of published clinical trials and outcomes reported over the past 30 years. The included studies mainly focused on recessive dystrophic EB (43%). Wound healing was reported most frequently across all studies and referred to as a primary outcome in 31% of trials. Great heterogeneity of reported outcomes was observed within all stratified subgroups. Moreover, a diverse range of outcome measurement instruments (n = 200) was identified. CONCLUSIONS: We show substantial heterogeneity in reported outcomes and outcome measurement instruments in EB clinical research over the past 30 years. This review is the first step towards harmonization of outcomes in EB, which is necessary to expedite the clinical translation of novel treatments for patients with EB.


Assuntos
Epidermólise Bolhosa Distrófica , Epidermólise Bolhosa , Humanos , Epidermólise Bolhosa/terapia , Cicatrização , Sistema de Registros , Medidas de Resultados Relatados pelo Paciente
9.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982270

RESUMO

Junctional epidermolysis bullosa (JEB) is a severe blistering skin disease caused by mutations in genes encoding structural proteins essential for skin integrity. In this study, we developed a cell line suitable for gene expression studies of the JEB-associated COL17A1 encoding type XVII collagen (C17), a transmembrane protein involved in connecting basal keratinocytes to the underlying dermis of the skin. Using the CRISPR/Cas9 system of Streptococcus pyogenes we fused the coding sequence of GFP to COL17A1 leading to the constitutive expression of GFP-C17 fusion proteins under the control of the endogenous promoter in human wild-type and JEB keratinocytes. We confirmed the accurate full-length expression and localization of GFP-C17 to the plasma membrane via fluorescence microscopy and Western blot analysis. As expected, the expression of GFP-C17mut fusion proteins in JEB keratinocytes generated no specific GFP signal. However, the CRISPR/Cas9-mediated repair of a JEB-associated frameshift mutation in GFP-COL17A1mut-expressing JEB cells led to the restoration of GFP-C17, apparent in the full-length expression of the fusion protein, its accurate localization within the plasma membrane of keratinocyte monolayers as well as within the basement membrane zone of 3D-skin equivalents. Thus, this fluorescence-based JEB cell line provides the potential to serve as a platform to screen for personalized gene editing molecules and applications in vitro and in appropriate animal models in vivo.


Assuntos
Epidermólise Bolhosa Juncional , Epidermólise Bolhosa , Animais , Humanos , Epidermólise Bolhosa Juncional/genética , Edição de Genes , Pele , Mutação , Queratinócitos , Epidermólise Bolhosa/genética
10.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901755

RESUMO

Psoriasis is an inflammatory skin disease characterized by increased neo-vascularization, keratinocyte hyperproliferation, a pro-inflammatory cytokine milieu and immune cell infiltration. Diacerein is an anti-inflammatory drug, modulating immune cell functions, including expression and production of cytokines, in different inflammatory conditions. Therefore, we hypothesized that topical diacerein has beneficial effects on the course of psoriasis. The current study aimed to evaluate the effect of topical diacerein on imiquimod (IMQ)-induced psoriasis in C57BL/6 mice. Topical diacerein was observed to be safe without any adverse side effects in healthy or psoriatic animals. Our results demonstrated that diacerein significantly alleviated the psoriasiform-like skin inflammation over a 7-day period. Furthermore, diacerein significantly diminished the psoriasis-associated splenomegaly, indicating a systemic effect of the drug. Remarkably, we observed significantly reduced infiltration of CD11c+ dendritic cells (DCs) into the skin and spleen of psoriatic mice with diacerein treatment. As CD11c+ DCs play a pivotal role in psoriasis pathology, we consider diacerein to be a promising novel therapeutic candidate for psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Camundongos , Baço/metabolismo , Camundongos Endogâmicos C57BL , Pele/metabolismo , Psoríase/patologia , Dermatite/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
11.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901775

RESUMO

Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3'-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within COL7A1 via spliceosome-mediated RNA trans-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of COL7A1 via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a trans-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3'-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected COL7A1 mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3'-RTMS6m repair molecule.


Assuntos
Epidermólise Bolhosa Distrófica , Epidermólise Bolhosa , Humanos , Trans-Splicing , Pele/metabolismo , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa/genética , Queratinócitos/metabolismo , Colágeno Tipo VII/genética , Mutação
12.
Cancers (Basel) ; 14(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36428658

RESUMO

Chondroitin sulfate (CS) proteoglycan 4 (CSPG4) is a cell surface proteoglycan that is currently under investigation as a marker of cancer malignancy, and as a potential target of anticancer drug treatment. CSPG4 acts as a driver of tumourigenesis by regulating turnover of the extracellular matrix (ECM) to promote tumour cell invasion, migration as well as inflammation and angiogenesis. While CSPG4 has been widely studied in certain malignancies, such as melanoma, evidence is emerging from global gene expression studies, which suggests a role for CSPG4 in squamous cell carcinoma (SCC). While relatively treatable, lack of widely agreed upon diagnostic markers for SCCs is problematic, especially for clinicians managing certain patients, including those who are aged or infirm, as well as those with underlying conditions such as epidermolysis bullosa (EB), for which a delayed diagnosis is likely lethal. In this review, we have discussed the structure of CSPG4, and quantitatively analysed CSPG4 expression in the tissues and pathologies where it has been identified to determine the usefulness of CSPG4 expression as a diagnostic marker and therapeutic target in management of malignant SCC.

13.
Front Med (Lausanne) ; 9: 976604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091706

RESUMO

Background: Epidermolysis bullosa (EB), a severe genetic disorder characterized by blister formation in skin, is caused by mutations in genes encoding dermal-epidermal junction proteins that function to hold the skin layers together. CRISPR/Cas9-induced homology-directed repair (HDR) represents a promising tool for editing causal mutations in COL17A1 in the treatment of junctional epidermolysis bullosa (JEB). Methods: In this study, we treated primary type XVII collagen (C17)-deficient JEB keratinocytes with either Cas9 nuclease or nickase (Cas9n) ribonucleoproteins (RNP) and a single-stranded oligonucleotide (ssODN) HDR template in order to correct a causal pathogenic frameshift mutation within the COL17A1 gene. Results: As analyzed by next-generation sequencing of RNP-nucleofected keratinocytes, we observed an HDR efficiency of ∼38% when cells were treated with the high-fidelity Cas9 nuclease, a mutation-specific sgRNA, and an ssODN template. The combined induction of end-joining repair and HDR-mediated pathways resulted in a C17 restoration efficiency of up to 60% as assessed by flow cytometry. Furthermore, corrected JEB keratinocytes showed a significantly increased adhesive strength to laminin-332 and an accurate deposition of C17 along the basement membrane zone (BMZ) upon differentiation into skin equivalents. Conclusion: Here we present a gene editing approach capable of reducing end joining-generated repair products while increasing the level of seamless HDR-mediated gene repair outcomes, thereby providing a promising CRISPR/Cas9-based gene editing approach for JEB.

14.
Mol Ther ; 30(8): 2680-2692, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35490295

RESUMO

Junctional epidermolysis bullosa (JEB) is a debilitating hereditary skin disorder caused by mutations in genes encoding laminin-332, type XVII collagen (C17), and integrin-α6ß4, which maintain stability between the dermis and epidermis. We designed patient-specific Cas9-nuclease- and -nickase-based targeting strategies for reframing a common homozygous deletion in exon 52 of COL17A1 associated with a lack of full-length C17 expression. Subsequent characterization of protein restoration, indel composition, and divergence of DNA and mRNA outcomes after treatment revealed auspicious efficiency, safety, and precision profiles for paired nicking-based COL17A1 editing. Almost 46% of treated primary JEB keratinocytes expressed reframed C17. Reframed COL17A1 transcripts predominantly featured 25- and 37-nt deletions, accounting for >42% of all edits and encoding C17 protein variants that localized accurately to the cell membrane. Furthermore, corrected cells showed accurate shedding of the extracellular 120-kDa C17 domain and improved adhesion capabilities to laminin-332 compared with untreated JEB cells. Three-dimensional (3D) skin equivalents demonstrated accurate and continuous deposition of C17 within the basal membrane zone between epidermis and dermis. Our findings constitute, for the first time, gene-editing-based correction of a COL17A1 mutation and demonstrate the superiority of proximal paired nicking strategies based on Cas9 D10A nickase over wild-type Cas9-based strategies for gene reframing in a clinical context.


Assuntos
Autoantígenos , Epidermólise Bolhosa Juncional , Epidermólise Bolhosa , Colágenos não Fibrilares , Autoantígenos/genética , Desoxirribonuclease I/genética , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa Juncional/genética , Epidermólise Bolhosa Juncional/terapia , Homozigoto , Humanos , Laminina/genética , Mutação , Colágenos não Fibrilares/genética , Deleção de Sequência
15.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163654

RESUMO

Mutations within the COL7A1 gene underlie the inherited recessive subtype of the blistering skin disease dystrophic epidermolysis bullosa (RDEB). Although gene replacement approaches for genodermatoses are clinically advanced, their implementation for RDEB is challenging and requires endogenous regulation of transgene expression. Thus, we are using spliceosome-mediated RNA trans-splicing (SMaRT) to repair mutations in COL7A1 at the mRNA level. Here, we demonstrate the capability of a COL7A1-specific RNA trans-splicing molecule (RTM), initially selected using a fluorescence-based screening procedure, to accurately replace COL7A1 exons 1 to 64 in an endogenous setting. Retroviral RTM transduction into patient-derived, immortalized keratinocytes resulted in an increase in wild-type transcript and protein levels, respectively. Furthermore, we revealed accurate deposition of recovered type VII collagen protein within the basement membrane zone of expanded skin equivalents using immunofluorescence staining. In summary, we showed for the first time the potential of endogenous 5' trans-splicing to correct pathogenic mutations within the COL7A1 gene. Therefore, we consider 5' RNA trans-splicing a suitable tool to beneficially modulate the RDEB-phenotype, thus targeting an urgent need of this patient population.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa/genética , RNA/metabolismo , Humanos , Splicing de RNA , Trans-Splicing
16.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008999

RESUMO

Conventional anti-cancer therapies based on chemo- and/or radiotherapy represent highly effective means to kill cancer cells but lack tumor specificity and, therefore, result in a wide range of iatrogenic effects. A promising approach to overcome this obstacle is spliceosome-mediated RNA trans-splicing (SMaRT), which can be leveraged to target tumor cells while leaving normal cells unharmed. Notably, a previously established RNA trans-splicing molecule (RTM44) showed efficacy and specificity in exchanging the coding sequence of a cancer target gene (Ct-SLCO1B3) with the suicide gene HSV1-thymidine kinase in a colorectal cancer model, thereby rendering tumor cells sensitive to the prodrug ganciclovir (GCV). In the present work, we expand the application of this approach, using the same RTM44 in aggressive skin cancer arising in the rare genetic skin disease recessive dystrophic epidermolysis bullosa (RDEB). Stable expression of RTM44, but not a splicing-deficient control (NC), in RDEB-SCC cells resulted in expression of the expected fusion product at the mRNA and protein level. Importantly, systemic GCV treatment of mice bearing RTM44-expressing cancer cells resulted in a significant reduction in tumor volume and weight compared with controls. Thus, our results demonstrate the applicability of RTM44-mediated targeting of the cancer gene Ct-SLCO1B3 in a different malignancy.


Assuntos
Epidermólise Bolhosa Distrófica/complicações , Epidermólise Bolhosa/complicações , Terapia Genética/métodos , Splicing de RNA , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/terapia , Trans-Splicing , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Epidermólise Bolhosa/genética , Epidermólise Bolhosa Distrófica/genética , Ganciclovir/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Loci Gênicos , Terapia Genética/efeitos adversos , Humanos , Camundongos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055192

RESUMO

Despite a significant rise in the incidence of cutaneous squamous cell carcinoma (SCC) in recent years, most SCCs are well treatable. However, against the background of pre-existing risk factors such as immunosuppression upon organ transplantation, or conditions such as recessive dystrophic epidermolysis bullosa (RDEB), SCCs arise more frequently and follow a particularly aggressive course. Notably, such SCC types display molecular similarities, despite their differing etiologies. We leveraged the similarities in transcriptomes between tumors from organ transplant recipients and RDEB-patients, augmented with data from more common head and neck (HN)-SCCs, to identify drugs that can be repurposed to treat these SCCs. The in silico approach used is based on the assumption that SCC-derived transcriptome profiles reflect critical tumor pathways that, if reversed towards healthy tissue, will attenuate the malignant phenotype. We determined tumor-specific signatures based on differentially expressed genes, which were then used to mine drug-perturbation data. By leveraging recent efforts in the systematic profiling and cataloguing of thousands of small molecule compounds, we identified drugs including selumetinib that specifically target key molecules within the MEK signaling cascade, representing candidates with the potential to be effective in the treatment of these rare and aggressive SCCs.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Biologia Computacional/métodos , Epidermólise Bolhosa Distrófica/complicações , Transplante de Órgãos/efeitos adversos , Neoplasias Cutâneas/genética , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/etiologia , Mineração de Dados , Reposicionamento de Medicamentos , Epidermólise Bolhosa Distrófica/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , RNA-Seq , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/etiologia
19.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805154

RESUMO

Intermediate junctional epidermolysis bullosa caused by mutations in the COL17A1 gene is characterized by the frequent development of blisters and erosions on the skin and mucous membranes. The rarity of the disease and the heterogeneity of the underlying mutations renders therapy developments challenging. However, the high number of short in-frame exons facilitates the use of antisense oligonucleotides (AON) to restore collagen 17 (C17) expression by inducing exon skipping. In a personalized approach, we designed and tested three AONs in combination with a cationic liposomal carrier for their ability to induce skipping of COL17A1 exon 7 in 2D culture and in 3D skin equivalents. We show that AON-induced exon skipping excludes the targeted exon from pre-mRNA processing, which restores the reading frame, leading to the expression of a slightly truncated protein. Furthermore, the expression and correct deposition of C17 at the dermal-epidermal junction indicates its functionality. Thus, we assume AON-mediated exon skipping to be a promising tool for the treatment of junctional epidermolysis bullosa, particularly applicable in a personalized manner for rare genotypes.


Assuntos
Autoantígenos/metabolismo , Epidermólise Bolhosa Juncional/genética , Colágenos não Fibrilares/metabolismo , Oligonucleotídeos Antissenso/genética , Splicing de RNA , Processamento Alternativo , Biópsia , Linhagem Celular , Sobrevivência Celular , Epidermólise Bolhosa Juncional/metabolismo , Epidermólise Bolhosa Juncional/terapia , Éxons , Genótipo , Homozigoto , Humanos , Queratinócitos/citologia , Lipossomos/química , Mutação , Técnicas de Cultura de Órgãos , RNA Mensageiro/metabolismo
20.
Exp Dermatol ; 30(8): 1009-1022, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33600038

RESUMO

Continuous exposure of the skin to environmental, mechanical and chemical stress necessitates constant self-renewal of the epidermis to maintain its barrier function. This self-renewal ability is attributed to epidermal stem cells (EPSCs), which are long-lived, multipotent cells located in the basal layer of the epidermis. Epidermal homeostasis - coordinated proliferation and differentiation of EPSCs - relies on fine-tuned adaptations in gene expression which in turn are tightly associated with specific epigenetic signatures and metabolic requirements. In this review, we will briefly summarize basic concepts of EPSC biology and epigenetic regulation with relevance to epidermal homeostasis. We will highlight the intricate interplay between mitochondrial energy metabolism and epigenetic events - including miRNA-mediated mechanisms - and discuss how the loss of epigenetic regulation and epidermal homeostasis manifests in skin disease. Discussion of inherited epidermolysis bullosa (EB) and disorders of cornification will focus on evidence for epigenetic deregulation and failure in epidermal homeostasis, including stem cell exhaustion and signs of premature ageing. We reason that the epigenetic and metabolic component of epidermal homeostasis is significant and warrants close attention. Charting epigenetic and metabolic complexities also represents an important step in the development of future systemic interventions aimed at restoring epidermal homeostasis and ameliorating disease burden in severe skin conditions.


Assuntos
Epiderme/metabolismo , Epigênese Genética , Homeostase , Dermatopatias/genética , Diferenciação Celular/genética , Humanos , Dermatopatias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...